Global Flood Monitoring Using GPM IMERG

Guojun Gu, Robert F. Adler, and Naijun Zhou

University of Maryland College Park

Objective

Evaluate the skills of the Global Flood Monitoring System (GFMS) with GPM IMERG precipitation in monitoring global flood events using the two recent flood cases: (i) flooding over Korean Peninsula, and (ii) Hurricane Florence related floods in southeastern U.S.

Floods over Korea (26-30 August, 2018)

- Differences exist between IMERG/TMPA and CPC gauges;
- IMERG tends to underestimate, while TMPA overestimates

Hurricane Florence (September 2018)

Summary

100 150 200 250 300

CPC Gauge (mm/day)

100 150 200 250 300

CPC Gauge (mm/day)

- ➤ GFMS is running with GPM IMERG in quasi-real-time between 50°N-50°S, producing reasonable results by comparing with available surface (streamgauge) observations;
- However, more evaluations and development are necessary to take advantage of the IMERG's resolution and coming improvements;
- ➤ Obvious differences exist between IMERG/TMPA and CPC gauges, either overestimating or underestimating, likely suggesting differing characteristics in different regions

Inundation calculations at 1 km resolution

Streamflow Comparison Upstream of New Bern

- Fig. GFMS tends to peak earlier with higher maximum flow;
- However, integration might equalize the volume calculation to the observation

IMERG-E & TMPA-RT vs. CPC Gauges over U.S. (Jul-Aug, 2018)

IMERG and TMPA overestimate rainrates over southwestern U.S.

TMPA overestimates rain-rates over southeastern U.S., while IMERG underestimates at high end

TMPA vs. CP(

IMERG vs.